

User Intent to Support Proactivity in a Pervasive System
Yussuf Abu Shaaban1, Sarah McBurney1, Nick Taylor1, M. Howard Williams1, Nikos Kalatzis 2 and

Ioanna Roussaki 2

Abstract. In a pervasive system it is essential to understand the
intent of the user in order to predict his/her future behaviour.
This in turn will help to minimise the user’s administrative
overheads and assist the user to achieve his/her goals. The aim of
this paper is to present some aspects of how user intent may be
handled. It focuses on the architecture supporting the proactive
features of the Persist pervasive platform. A formal definition of
the task discovery problem in user intent is provided. The use of
the discovered task model to predict the user’s next intended
task/action is introduced including the way in which user context
can assist in the prediction of the user’s intended task/action. 12

1 INTRODUCTION

In a pervasive environment with ubiquitous access to services,
networks and devices it is essential that mechanisms are in place
to mitigate the user’s resource management responsibilities and
aid the user in daily tasks. Such mechanisms should be based on
high level knowledge of the user’s preferences and intentions,
and the resulting user behaviour. Without such knowledge it is
difficult for a pervasive system to identify accurately what
actions will help rather than hinder the user.

The Daidalos project developed a pervasive system which
included a personalisation and preference management
subsystem (including learning) which implicitly gathered and
managed a set of preferences for the user by monitoring user
behaviour and extracting preferences from the monitored user
behaviour history. This pervasive system was successfully
demonstrated in December 2008. The personalisation subsystem
allowed the system to personalise the user’s environment in an
unobtrusive and beneficial way (based on previous user
behaviour). However, this personalisation mechanism was
solely based on current context and therefore its ability to predict
future actions was limited. For example, if the user always turns
on the heat when they return home, preferences cannot trigger
such an action on behalf of the user until the user is in the home
context.

The Persist project is an FP7 EU project which started in April
2008. It aims to create a rather different form of pervasive
system but in doing so it will extend and adapt some of the
developments of the Daidalos system. In particular, it will
complement the personalisation and preference management
system with a user intent system. The aim of the user intent
system is to discover and manage a model of the user’s
behaviour in the form of tasks and actions. An action can be any
interaction between user and a service while a task is a sequence
of actions. Whereas a user preference specifies one action to

1 Department of Computer Science, School of Mathematical and
Computer Sciences, Heriot Watt University, UK. Email: {ya37,
ceesmm1, nkt, mhw}@macs.hw.ac.uk.
2 School of Electrical and Computer Engineering, National Technical
University of Athens (NTUA), Athens, Greece. Email: {nikosk,
Ioanna.Roussaki}@cn.ntua.gr.

perform when a context situation is met, user intent will specify
a sequence of actions to perform based on past and current user
behaviour. This overcomes the limitations on forecasting future
behaviour and preferences enabling the prediction of
environment adaptations in the future.

Returning to the earlier example, user intent may recognise a
‘going home’ task which starts when the user switches off their
computer and office lights. When the system identifies that this
task is being performed, it could trigger the user’s heating
system so that the house is at the required temperature for the
user’s arrival.

Both user intent predictions and preferences will provide input
to proactivity mechanisms within the Persist framework. With
the addition of user intent predictions, proactive mechanisms can
perform operations well in advance providing an environment
that minimises user involvement and enhances user experience.

The rest of the paper is structured as follows. The next section
looks at related work investigating user-intent for proactivity in
pervasive systems. Section 3 introduces the notion of a Personal
Smart Space (PSS) and describes the high level design of the
Persist architecture. Section 4 illustrates the architecture of the
Persist User Intent system. Section 5 concludes and details
future work.

2 RELATED WORK

In the past various projects have addressed the problem of
adapting environments in a proactive manner. Among the
pioneers were IBM’s Blue Space [1] and UMA’s Intelligent
Home project [2], which based proactive adaptations on user
preferences. However users had to manually create and maintain
their preference set. This is no trivial task and the burden of
such information management responsibilities led to a sparse
preference set. Therefore, only basic personalised environment
adaptation was provided by these systems. Another project that
addressed this challenge was Aura [3]. Aura attempted to
incorporate user intent to aid proactive actions. However as with
the previous projects the user was expected to manually enter
high level information, such as the user’s current task, as well as
basic preference information. Once again this approach proved
to be inefficient, as the burden on the user was not mitigated.

The MavHome[4] project attempted to reduce the user’s
information management responsibilities by facilitating
monitoring and learning mechanisms to gather user information
unobtrusively. In more detail, MavHome aims to provide a house
with mechanisms capable of maximizing inhabitants’ comfort
and minimizing operational cost by predicting the user’s
intentions with regard to mobility patterns and device usage. In
order to achieve this, MavHome models locations inside the
house by creating a dictionary of zone identities treated as
character symbols and gathers statistics based on the history of
user movement contexts, or phrases. The prediction algorithm
used is called “LeZi-update” and is based on the dictionary-
based LZ78 compression algorithm. In order to predict the user’s
next action, the system identifies patterns observed in past

inhabitants’ activities. User actions are represented by
characters, which are monitored and stored in a history log. The
algorithm used is called Smart Home Inhabitant Prediction
(SHIP) that basically matches the most recent sequence of events
with sequences in collected histories.

Specter [5] is a mobile personal assistant aiming to assist
users in their everyday life tasks or situations. The system learns
and binds situations and services between the user and the
system, in a collaborative process. Specter proposes a memory
model that consists of two main parts that cater for short-term
memory and long-term memory. Contextual data provided by the
environment is initially collected and maintained in short-term
memory and forms a snapshot of current user context. At this
point, context-aware services can be provided via rules which
have been previously defined by the user. When stored
information becomes outdated, it is transferred to long-term
memory, where there are opportunities for review and evaluation
by the user in a process called introspection. The process
performed on long-term memory leads to a learned user model
that reflects the user’s situation and activities.

Synapse [6] is a context-aware service platform for the
provision of specific services to users. Synapse learns different
patterns of user behaviour (i.e. tasks) by exploiting the recorded
histories of context and services. Based on the user’s current
situation and task, Synapse can predict and provide the most
appropriate services. The creation of a user model is based on
Bayesian networks or on Hidden Markov Models. In case there
is a system uncertainty, the system asks for user input,
something that allows for more accurate personalization, but at
the same time the user might be disturbed by too many pop-up
messages. In [7], a system is presented that supports proactive,
modelling-based, adaptations in a user’s office. The system
learns the patterns of the user’s behaviour in an office
environment by utilizing context history. Initially, the user
controls the environment of an office (e.g. opening/closing
windows, turning lights on/off, and adjusting the temperature).
Gradually, the system learns the user’s situation and behaviour
as the size of context history data increases. After some time, the
system is capable of providing dynamic adjustments based on
the created user model, without the need for predefined rules.
The system includes two databases, one for storing context
history and one for storing the learned user model. The learning
process is based on a fuzzy set based decision tree learning
algorithm.

3 THE PERSIST SYSTEM

A Personal Smart Space (PSS) is defined by a set of services
within a dynamic space of connectable devices where the set of
services are owned, controlled, or administered by a single user
or organisation. It facilitates interactions with other PSSs, is self-
improving and capable of proactive behaviour. Thus, a PSS is:
user centric, always controlled by a single user; it is mobile; it
allows interactions with other PSSs and is capable of self-
improvement.

This section elaborates on the Persist system and more
specifically, on the PSS high level architecture design. In order
to provide a high level specification of the Persist architecture,
five main layers have been distinguished in the functional

design, where each layer incorporates various component blocks
and components that are essential to the design of the PSS
environment. The layered PSS architecture of Persist is depicted
in Figure 1.Each layer addresses a well defined part of the PSS
functionality. The names and purpose of these layers are
presented hereafter.

Figure 1. The high level architecture of Personal Smart Spaces

Layer 1 - Devices
The PSS definition suggests that a single PSS can span many

different devices. Depending on their processing and networking
capabilities, these devices may either implement the PSS stack
or part of it, or simply interact with the rest of the PSS
framework.

Based on a study of the functional/technical commonalities of
current communication and computing leading technologies, the
devices that may be part of a PSS have been classified as
follows: (i) servers (i.e. independent computers dedicated to
provide one or more services over a computer network; e.g.
Windows Media Center, Apple Itheatre, PCs), (ii) laptops (i.e.
small-sized portable computers; e.g. Mac Book, Sony Vaio,
Tablet PC), (iii) mobile phones (i.e. pocket-sized handheld
computing devices; e.g. iPhone, HTC Tytan, Nokia N90, PDA),
(iv) sensors (i.e. group of devices that may be embedded into
other devices, can measure a physical parameter and convert it
into a signal, which in turn can be read by an observer or an
instrument; e.g. RFID readers, GPS location estimators,
accelerometers, thermometers, altimeter, barometer, air speed
indicator, signal strength measurer), (v) smart objects (i.e.
resource-constrained devices that can be connected to the
Internet or a LAN via a wifi connection, ethernet, GPRS, 3G,
etc., usually intended for displaying multimedia content such as
a combination of text, audio, still images, animation and video or
other everyday objects enhanced with pervasive facilities; e.g.
WiFi photoframes, Chumby, Nabaztag, home eAppliances,
surveillance cameras) and (vi) interactive entertainment
electronic devices (i.e. interactive entertainment electronic
devices producing a video display signal, which can be used with
a display device (a television, monitor, etc.) to display a video
game or an external source of signal, such as ipTV; e.g. set-top
box, gaming console).

Layer 2 - System Run-Time Environment
The System Run-Time layer of the PSS architecture serves as

an abstraction layer between the underlying device operating

system and the PSS software, in order to achieve a high degree
of platform independence. Essentially, this layer is the one that
makes a device PSS-enabled. Hence, employing an “off-the-
shelf” implementation of a virtual machine run-time will offer
PSS portability over a wide range of software and hardware
platforms. This layer is also responsible for the device mobility
and sensor management.

Layer 3 - Overlay Network Management
The Overlay Network Management layer provides the PSS

architecture with a Peer-to-Peer (P2P) management and
communication layer. The services within this layer provide
functionality for PSS peer group management, PSS peer
discovery, peer PSS group discovery, PSS communication
management and message routing between peer networks of
PSSs. It is assumed that the lower level ad-hoc networking
functionality will be managed by other 3rd party components and
therefore it is considered outside the scope of the Persist Project.

Layer 4 - Service Run-Time Environment
The Service Run-Time Environment layer provides a

container for the PSS services. It supports service life cycle
management features and provides a service registry, as well as,
a device registry. Moreover, it allows for service management in
a distributed fashion across multiple devices within the same
PSS. In this context, it delivers fault tolerance as well as device
resource management. The Service Run-Time Environment also
provides advanced information management features for
achieving high availability of data, for addressing storage
requirements of PSS services, and for supporting event and
message management.

 Layer 5 - PSS Framework
The PSS Framework layer is the core of the PSS architecture.

Its functionality includes service discovery, composition and
session management (both PSS and 3rd party services) as well as
management of context information, including user preferences.
Moreover, the PSS Framework layer supports inference of
context information, automatic learning of preferences, and
identification of user’s future intentions. This information,
together with data provided by the recommender system of this
layer, enables the proactive facilities of the PSS platform. The
PSS Framework layer also offers support for user interaction
monitoring as well as user feedback collection and management.
Furthermore, this layer provides support for conflict resolution,
grouping of context data and preferences and resource sharing.
Finally, the PSS Framework layer enables security and privacy
management, demonstrating features such as access control,
identity management, privacy and trust management, and policy
management. However, it should be mentioned that some
security and privacy facilities of the PSS also need support from
layers 2, 3 and 4 to enable a fully secure and privacy-aware PSS
system.

4 OVERVIEW OF THE USER INTENT
SUBSYSTEM

As described in Section 3, to support the proactive behaviour in
Persist, user intentions need to be predicted. Figure 2 illustrates
the User Intent subsystem. Controlled by the User Intent
Manager, the Discovery component is responsible for identifying

a set of tasks the user could perform in the future in specific
contexts based on learning from the user’s history of actions and
contexts. The Task Model produced, composed of the tasks
identified, is passed to the Prediction component. Based on
actions the user recently performed and the user’s current
context, the Prediction component uses the Task Model to infer
the next action/task the user is intending to perform. This
prediction is passed to the Proactivity component which later
sends feedback to User Intent regarding the correctness of the
task/action predicted, as judged by the user’s reaction to the
action taken.

The rest of this section is structured as follows. An overview
of task discovery is provided in Section 4.1. This is followed in
Section 4.2 by a description of task/action prediction to support
proactivity.

Figure 2 The User Intent System Architecture

4.1 Task and Context Pattern Discovery

The Discovery part of User Intent shown in Figure 2 identifies a
set of tasks the user might perform in the future based on user
history. Formally, user history can be expressed as a set {(a1, c1),
(a2, c2),…,(an, cn)} where (ai, ci) represents the action ai

performed by the user in context snapshot ci. A number of
attributes can be included in a context snapshot such as location,

User
Interaction

History
Actions +
Context

User Interaction
Monitor

 Action +
 Context

Proactivity

User Intent

User Intent
Manager

 Discovery

Task
Discovery

Task/Context
Association

 Prediction

Task
Identifier

Task
Model

Learning
Manager

 Task
Prediction

 Prediction
 Feedback

the type and name of the service the user is currently interacting
with, other services currently running in the PSS, etc.

The task discovery problem includes recognising a set of tasks
T1, T2, …,Ts, where Tj is composed of a sequence of actions as
illustrated in Figure 3. Pt{i,j} denotes the probability of starting Tj
on completion of Ti. The probability of performing ay after ax is
Pa{x,y} It is possible for one action to be part of more than one
task.

Figure 3 Task Model Discovery

As illustrated in Figure 4, the User Intent Manager triggers a
new discovery cycle based on the following factors:

• The number of prediction hits as indicated by the
Proactivity prediction feedback.

• The number of actions executed since the last
discovery cycle.

• The time elapsed since the last discovery cycle.
The following steps are performed in a discovery cycle:

• The User Intent Manager instructs Task Discovery to
start the discovery cycle.

• On Task Discovery request, the Learning Manager
applies a pattern recognition algorithm to the user
history in order to detect patterns of user actions. Each
pattern identified is a potential user task. The
probability of performing a task given the previous
task performed is computed. The probability of
undertaking an action given the previous action
performed is also computed.

• Once the tasks are identified, associating user context
to the actions forming the tasks discovered is required,
as the user could in the past have performed the same
task in different contexts. Analysis is performed by the
Task/Context Association component to associate a
unified context with the actions discovered.

• The Task Model is updated with the new task
discovery model.

Figure 4 The Task Discovery Cycle

4.2 Task Prediction
The Prediction part of User Intent uses the Task Model produced
by Discovery to predict the next task/action the user is intending
to perform. A number of factors could be taken into account in
predicting the next intended task/action which includes: the
previous action predicted, the feedback from Proactivity on the
accuracy of this prediction, the action the user actually
performed (if different from what was predicted) and the list of
subsequent correct predictions made previously. An initial
proposal for an algorithm to predict user intention is given
below. A prediction cycle starts when the User Intent Manager
receives from User Interaction Monitoring the details of the
current action the user is performing. The Task Identifier checks
the current task prediction against the action that the user has
performed. Figure 4 illustrates the prediction steps required
when the current predicted task is valid and there are more
actions in the task as specified in the Task Model. In this case,
the prediction will be the next action in the currently predicted
task. If the current predicted task is correct and there are no more
actions in the task, the next possible tasks are retrieved from the
Task Model as illustrated in Figure 5. The Task Identifier
decides on the next task based on probability and/or the match
between the user’s current context and the context associated
with the next possible tasks. The predicted action will be the first
action in the chosen task. However, if the probabilities are below
a threshold value and there is no context match, no prediction
can be made. When the current predicted task is invalid, the Task

Task Action
Action
 Link

 Task
 Link

Identifier searches the Task Model to allocate the action the user
actually performed as illustrated in Figure 6. If the action is
found, the next action is chosen based on probability and context
match. No prediction can be made if the probabilities are below
a certain threshold and there is no context match.

The predicted action is sent to Proactivity which in turn sends
a prediction feedback to the User Intent Manager indicating
whether the User Intent prediction was acceptable to the user or
not. Based on this feedback, the User Intent Manager maintains a
prediction hit percentage which assists the decision as to when to
start a task discovery cycle as described in Section 4.1.

If the previous prediction cycle was successful
 If there are more actions in the currently predicted task
 Predict the next action in task
 Else if the last action in the task has just been performed
 Check next tasks in the Task Model
 Choose next task based on probability & context match
 If there is no context match & probabilities below a
 threshold value
 Inform Proactivity that a prediction can’t be made
 Else

Predict the first action in the task with highest
probability and/or closest context match

Else if previous prediction cycle was not successful
 Locate last action performed by the user in the Task Model
 If action is found
 Check next actions in the Task Model
 Choose next action based on probability & context match
 If there is no context match & probabilities below a
 threshold value
 Inform Proactivity that a prediction can’t be made
 Else

Predict action with highest probability and/or closest
context match

 Else if action not found
 Inform Proactivity that a prediction can’t be made

Figure 4 Prediction When Current Predicted Task is Valid with
More Actions in Task

Figure 5 Prediction When Current Predicted Task is Valid with

No More Actions in Task

Figure 6 Prediction When Current Predicted Task is Invalid

5 CONCLUSION AND FUTURE WORK

In this paper, the notion of a Personal Smart Space (PSS) is
introduced and an overview of the Persist system architecture is
given. The User Intent component required to support the
proactive behaviour in Persist is described. The architecture of

the User Intent subsystem is explained. A formal definition of
the task discovery problem is provided. The use of the task
model discovered to predict the user’s next intended task/action
is described. Associating user context with the tasks discovered
and using such context to assist in the prediction of the user’s
intended task/action is introduced.

A number of open issues still need to be tackled in the User
Intent subsystem. This includes the pattern discovery
algorithm(s) to be used in task discovery. The issue of
associating context with the actions and task discovered also
needs further research. Work is required to define the format in
which the discovered task model is stored and where this model
should be stored. One proposal is to store the discovered task
model as a graph in the Prediction part of the User Intent
subsystem and periodically update a backup copy in the PSS’s
database. However, partitioning the model and storing only part
of it in User Intent is also a serious option as the discovered task
model becomes too large to be accommodated in a mobile
device with limited memory capabilities. The use of a priori
knowledge of tasks, defined explicitly by the user or based on
tasks performed by other users to predict user intent can also be
considered. Such tasks could improve the accuracy of User
Intent predictions at the early stage of system usage when there
is no enough history to learn an accurate task model.

ACKNOWLEDGMENT

This work was supported by the European Union under the FP7
programme (PERSIST project) which the authors gratefully
acknowledge. The authors also wish to thank all colleagues in
the PERSIST project developing the pervasive system.
However, it should be noted that this paper expresses the
authors’ personal views, which are not necessarily those of the
PERSIST consortium. Apart from funding the PERSIST project,
the European Commission has no responsibility for the content
of this paper.

REFERENCES
[1] S. Yoshihama, P. Chou, and D. Wong, “Managing Behaviour of

Intelligent Environments”, Proc. PerCom ’03, pp 330-337, 2003.
[2] V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent,

T. Wagner, P. Xuan, and S.X.Q. Zhang, “The Intelligent Home
Testbed”, Proc. Anatomy Control Software Workshop, 1999, pp 291-
298.

[3] Sousa, J.P., Poladian, V., Garlan, D., Schmerl, B., Shaw, M., “Task-
based Adaptation for Ubiquitous Computing”, IEEE Transactions on
Systems, Man and Cybernetics, Part C: Applications and Reviews,
Special Issue on Engineering Autonomic Systems, Vol 36(3), 2006,
pp. 328 - 340.

[4] K. Gopalratnam, D. J. Cook, “Online Sequential Prediction via
Incremental Parsing: The Active LeZi Algorithm”, Intelligent
Systems, IEEE, Vol. 22(1), 2007, pp.52-58.

[5] A. Kroner, D. Heckmann, and Wolfgang Wahlster, “SPECTER:
Building, Exploiting, and Sharing Augmented Memories”, 2006.

[6] H. Si, Y. Kawahara, H. Morikawa, T. Aoyama, A stochastic
approach for creating context aware services based on context
histories in smart Home, Proceeding of 1st international workshop on
exploiting context histories is smart environments, Pervasive 2005,
Munich ,Germany, May 2005.

[7] H.E. Byun, K. Cheverst, "Utilising Context History to Provide
Dynamic Adaptations", Journal of Applied AI, Taylor & Francis.
Vol. 18, No. 6, July 2004.

