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Abstract. In a pervasive system it is essential to undedsthe

intent of the user in order to predict his/her fetdbehaviour.
This in turn will help to minimise the user's adistnative

overheads and assist the user to achieve his/laés. ghe aim of
this paper is to present some aspects of how ngEmtimay be
handled. It focuses on the architecture suppotttigproactive
features of the Persist pervasive platform. A fdrdedinition of

the task discovery problem in user intent is predidThe use of
the discovered task model to predict the user'st meended

task/action is introduced including the way in whigser context
can assist in the prediction of the user’s intertds#/action.

1INTRODUCTION

In a pervasive environment with ubiquitous accessdrvices,
networks and devices it is essential that mechanam in place
to mitigate the user’s resource management redpibtiss and
aid the user in daily tasks. Such mechanisms ghmeibased on
high level knowledge of the user's preferences mmentions,
and the resulting user behaviour. Without suchwkedge it is
difficult for a pervasive system to identify accialg what
actions will help rather than hinder the user.

The Daidalos project developed a pervasive systdnthw
included a personalisation
subsystem (including learning) which implicitly pated and
managed a set of preferences for the user by morgtaser
behaviour and extracting preferences from the rooedt user
behaviour history. This pervasive system was ssfaly
demonstrated in December 2008. The personalisatibaystem
allowed the system to personalise the user's enwiemt in an
unobtrusive and beneficial way (based on previoser u
behaviour). However, this personalisation mechanizas
solely based on current context and thereforebilityato predict
future actions was limited. For example, if therualways turns
on the heat when they return home, preferencesotdrigger
such an action on behalf of the user until the isér the home
context.

The Persist project is an FP7 EU project whichtatain April
2008. It aims to create a rather different formpefvasive
system but in doing so it will extend and adapt soof the
developments of the Daidalos system. In particuitrwill
complement the personalisation and preference neamagt
system with a user intent system. The aim of ther untent
system is to discover and manage a model of the'suse
behaviour in the form of tasks and actions. Anoactan be any
interaction between user and a service while aitaaksequence
of actions. Whereas a user preference specifiesagtion to
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perform when a context situation is met, user inteii specify

a sequence of actions to perform based on pastuament user
behaviour. This overcomes the limitations on fasting future
behaviour and preferences enabling the predictioh o
environment adaptations in the future.

Returning to the earlier example, user intent mapgaise a
‘going home’ task which starts when the user sveitcbff their
computer and office lights. When the system idmstithat this
task is being performed, it could trigger the useleating
system so that the house is at the required tetyperéor the
user’s arrival.

Both user intent predictions and preferences wiljate input
to proactivity mechanisms within the Persist framgw With
the addition of user intent predictions, proactivechanisms can
perform operations well in advance providing aniemment
that minimises user involvement and enhances xgarience.

The rest of the paper is structured as follows. fidt section
looks at related work investigating user-intent jooactivity in
pervasive systems. Section 3 introduces the nati@Personal
Smart Space (PSS) and describes the high levejrdedithe
Persist architecture. Section 4 illustrates thehigecture of the
Persist User Intent system. Section 5 concludes details
future work.

and preference managemen

2RELATED WORK

In the past various projects have addressed thelgmo of

adapting environments in a proactive manner. Amdhg

pioneers were IBM’s Blue Space [1] and UMA'’s Intedig

Home project [2], which based proactive adaptationsuser
preferences. However users had to manually createraintain
their preference set. This is no trivial task ahd burden of
such information management responsibilities ledatgparse
preference set. Therefore, only basic personaksadronment
adaptation was provided by these systems. Anottajeqi that
addressed this challenge was Aura [3]. Aura attedhgo

incorporate user intent to aid proactive actioHewever as with
the previous projects the user was expected to afignenter

high level information, such as the user’s curtesk, as well as
basic preference information. Once again this amgrgoroved
to be inefficient, as the burden on the user wasnitigated.

The MavHome[4] project attempted to reduce the 'siser
information management responsibilities by fadilitg
monitoring and learning mechanisms to gather ugferrnation
unobtrusively. In more detail, MavHome aims to pdeva house
with mechanisms capable of maximizing inhabitartsmfort
and minimizing operational cost by predicting thsets
intentions with regard to mobility patterns and idewusage. In
order to achieve this, MavHome models locationsdaghe
house by creating a dictionary of zone identitiesated as
character symbols and gathers statistics basetieohistory of
user movement contexts, or phrases. The predigigarithm
used is called “LeZi-update” and is based on thaiahary-
based LZ78 compression algorithm. In order to qutettlie user’s
next action, the system identifies patterns obskrire past



inhabitants’ activities. User actions are represgntby
characters, which are monitored and stored in taryisog. The
algorithm used is called Smart Home Inhabitant i@tih

(SHIP) that basically matches the most recent segpuef events
with sequences in collected histories.

Specter [5] is a mobile personal assistant aimmggsist
users in their everyday life tasks or situatiortse ystem learns
and binds situations and services between the asdrthe
system, in a collaborative process. Specter prgasmemory
model that consists of two main parts that catersfoort-term
memory and long-term memory. Contextual data pravidethe
environment is initially collected and maintained short-term
memory and forms a snapshot of current user canféxthis
point, context-aware services can be provided ulasrwhich
have been previously defined by the user. Whenedtor
information becomes outdated, it is transferredidng-term
memory, where there are opportunities for revied evaluation
by the user in a process called introspection. Phecess
performed on long-term memory leads to a learnedt owdel
that reflects the user’s situation and activities.

Synapse [6] is a context-aware service platform tioe
provision of specific services to users. Synapsente different
patterns of user behaviour (i.e. tasks) by expigithe recorded
histories of context and services. Based on the'suserrent
situation and task, Synapse can predict and prothidemost
appropriate services. The creation of a user mibhsed on
Bayesian networks or on Hidden Markov Models. Inectiere
is a system uncertainty, the system asks for useuti
something that allows for more accurate personizabut at
the same time the user might be disturbed by tooynp@p-up
messages. In [7], a system is presented that sispparactive,
modelling-based, adaptations in a user’'s officee Hystem
learns the patterns of the user's behaviour in dficeo
environment by utilizing context history. Initia)Jlythe user
controls the environment of an office (e.g. opefulging
windows, turning lights on/off, and adjusting th@mperature).
Gradually, the system learns the user’s situatiaeh laehaviour
as the size of context history data increasesr Afime time, the
system is capable of providing dynamic adjustmérased on
the created user model, without the need for pheeefrules.
The system includes two databases, one for stocorgext
history and one for storing the learned user mobled learning
process is based on a fuzzy set based decisionleagring
algorithm.

3 THE PERSIST SYSTEM

A Personal Smart Space (PSS) is defined by a setmwices
within a dynamic space of connectable devices wiezeset of
services are owned, controlled, or administerea lsyngle user
or organisation. It facilitates interactions witther PSSs, is self-
improving and capable of proactive behaviour. Tru®SS is:
user centric, always controlled by a single useis imobile; it
allows interactions with other PSSs and is capaiifleself-
improvement.

This section elaborates on the Persist system aote m
specifically, on the PSS high level architectursigie. In order
to provide a high level specification of the Pdrsigchitecture,
five main layers have been distinguished in thectional

design, where each layer incorporates various costoblocks
and components that are essential to the desigtheofPSS
environment. The layered PSS architecture of Rassidepicted
in Figure 1.Each layer addresses a well definet gfathe PSS
functionality. The names and purpose of these fayare
presented hereafter.
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Figure 1. The high level architecture of Personal Smartc8pa

Laver 1 - Devices
The PSS definition suggests that a single PSS mam many

different devices. Depending on their processimd ragtworking
capabilities, these devices may either implemeatRBS stack
or part of it, or simply interact with the rest dfie PSS
framework.

Based on a study of the functional/technical comities of
current communication and computing leading teabgiek, the
devices that may be part of a PSS have been aabsifs
follows: (i) servers(i.e. independent computers dedicated to
provide one or more services over a computer nétwerm.
Windows Media Center, Apple Itheatre, PCs), I@iptops (i.e.
small-sized portable computers; e.g. Mac Book, Svufayo,
Tablet PC), (iii) mobile phones(i.e. pocket-sized handheld
computing devices; e.g. iPhone, HTC Tytan, Nokia NBDA),

(iv) sensors(i.e. group of devices that may be embedded into
other devices, can measure a physical parameteca@mebrt it
into a signal, which in turn can be read by an pleseor an
instrument; e.g. RFID readers, GPS location estirmato
accelerometers, thermometers, altimeter, baromeierspeed
indicator, signal strength measurer), (sjnart objects(i.e.
resource-constrained devices that can be conneethe
Internet or a LAN via a wifi connection, ethern&PRS, 3G,
etc., usually intended for displaying multimedianant such as
a combination of text, audio, still images, animatand video or
other everyday objects enhanced with pervasivditfasi e.g.
WiFi photoframes, Chumby, Nabaztag, home eAppliance
surveillance cameras) and (vi)nteractive entertainment
electronic devices(i.e. interactive entertainment electronic
devices producing a video display signal, which lsarused with

a display device (a television, monitor, etc.) ispthy a video
game or an external source of signal, such as iElYy.; set-top
box, gaming console).

Layer 2 - System Run-Time Environment

The System Run-Time layer of the PSS architectuneseas
an abstraction layer between the underlying dewviperating




system and the PSS software, in order to achigvigtadegree
of platform independence. Essentially, this layethe one that
makes a device PSS-enabled. Hence, employing drthtf
shelf” implementation of a virtual machine run-timél offer
PSS portability over a wide range of software amddtvare
platforms. This layer is also responsible for tleide mobility
and sensor management.
Layer 3 - Overlay Network Management

The Overlay Network Management layer provides tisSP

architecture with a Peer-to-Peer
communication layer. The services within this laysovide
functionality for PSS peer group management,
discovery, peer PSS group discovery,
management and message routing between peer netwbr
PSSs. It is assumed that the lower level ad-howarking

functionality will be managed by othefparty components and

therefore it is considered outside the scope oP#msist Project.

Layer 4 - Service Run-Time Environment

The Service Run-Time Environment
container for the PSS services. It supports serlifeecycle
management features and provides a service registryrell as,
a device registry. Moreover, it allows for servinanagement in
a distributed fashion across multiple devices witttie same
PSS. In this context, it delivers fault toleransewsll as device
resource management. The Service Run-Time Envirohaiso
provides advanced
achieving high availability of data, for addressirsgprage
requirements of PSS services, and for supportingntexand
message management.

Layer 5 - PSS Framework

The PSS Framework layer is the core of the PSStactire.
Its functionality includes service discovery, corsion and

session management (both PSS dfg&ty services) as well as

management of context information, including usexfgrences.
Moreover, the PSS Framework layer supports inferent
context information, automatic learning of preferes, and
identification of user’s future intentions. This fanmation,
together with data provided by the recommenderesysif this
layer, enables the proactive facilities of the R#&form. The
PSS Framework layer also offers support for usesraction
monitoring as well as user feedback collection arahagement.
Furthermore, this layer provides support for catftiesolution,
grouping of context data and preferences and resasharing.
Finally, the PSS Framework layer enables security privacy
management, demonstrating features such as acoesmlc
identity management, privacy and trust managenaerd,policy
management. However,
security and privacy facilities of the PSS alsochsepport from
layers 2, 3 and 4 to enable a fully secure ancapyhaware PSS
system.

4 OVERVIEW OF THE USER INTENT
SUBSYSTEM

As described in Section 3, to support the proadieleaviour in
Persist, user intentions need to be predicted.r€iguillustrates
the User Intent subsystem. Controlled by the Usetenit
Manager, the Discovery component is responsiblédfemtifying

PS$r pe

PSS commummalt(t of task discovery is provided in Section 4.1. Tisigollowed in

layer provides a

information management features f

it should be mentioned thaheso

a set of tasks the user could perform in the futarspecific
contexts based on learning from the user’s histéctions and
contexts. The Task Model produced, composed of tds&s
identified, is passed to the Prediction compon&ased on
actions the user recently performed and the usewsent
context, the Prediction component uses the TaskeMiadinfer
the next action/task the user is intending to perfoThis
prediction is passed to the Proactivity componehickv later
sends feedback to User Intent regarding the caoresstof the

(P2P) managemertt a task/action predicted, as judged by the user'sti@ado the

action taken.

The rest of this section is structured as folloAs.overview

Section 4.2 by a description of task/action prédlicto support
proactivity.

Proactivity
A
Prediction Task
Feedback Prediction
\ 4
User Intent
Prediction Discovery
P Learning
- Manager
Task Task/Context
Identifier Association
Task Task
Model Discovery
User Intent
Manager User
Interaction
A History
Actions +
Contex
User Interaction
Monitor
Action +
Context

Figure 2 The User Intent System Architecture

4.1 Task and Context Pattern Discovery

The Discovery part of User Intent shown in Figurieléntifies a
set of tasks the user might perform in the futuasedl on user
history. Formally, user history can be expressed sef{(a;, ¢,),
(3, ©),...,(8, G)} where (8, G) represents the actiom
performed by the user in context snapsbotA number of
attributes can be included in a context snapshait as location,



the type and name of the service the user is dlyritteracting e The Task Model is updated with the new task
with, other services currently running in the P88, discovery model.
The task discovery problem includes recognisingtabtasks

Ty, To, ..., T, whereT; is composed of a sequence of actions agssseey /

illustrated in Figure 3Py denotes the probability of startirfig ; P R P—— F— Eo—————
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Figure 4 The Task Discovery Cycle
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4.2 Task Prediction

The Prediction part of User Intent uses the Taskidliproduced
As illustrated in Figure 4, the User Intent Managiggers a by Discovery to predict the next task/action therlj_s intending
new discovery cycle based on the following factors: to perform. A number of factors could be taken iagzount in
gbredicting the next intended task/action which udels: the
previous action predicted, the feedback from Preiggton the
lasfieeuracy of this prediction, the action the usetually
performed (if different from what was predicteddathe list of

. The time elapsed since the last discovery cycle subsequent correct predictions made previously. iAitial
. . . ) proposal for an algorithm to predict user intentisngiven

The following steps are performed in a discovergiey o

« The User Intent Manager instructs Task Discovery tobelow. A prediction cycle starts when the User nihtielanager

. receives from User Interaction Monitoring the dstaf the

start the dlsgovery cycle. . current action the user is performing. The Tasklifier checks
* On Task Discovery request, the Learning Manageine cyrrent task prediction against the action thatuser has
applies a pattern recognition algorithm to the usemerformeqd. Figure 4 illustrates the prediction stepquired
history in order to detect patterns of user acti@&h  \hen the current predicted task is valid and theme more
pattern. . identified is a potentlall user task. .Theactions in the task as specified in the Task Mobfethis case,
probability of performing a task given the previous y,o prediction will be the next action in the cuttg predicted
task per_formed IS _comp_uted. The pro_bab|I|ty _Of task. If the current predicted task is correct tregle are no more
undertaking an action given the previous actiongqiigns in the task, the next possible tasks arved from the

performed is also computed. o Task Model as illustrated in Figure 5. The Taskntifier

* Once the tasks are identified, associating usefegon gecides on the next task based on probability arttiée match
to the actions forming the tasks discovered isiredu  peryeen the user's current context and the corsesociated

as the user could in the past have performed e sa i, the next possible tasks. The predicted aatiibe the first
task in different contexts. Analysis is performgdtbe  5ction in the chosen task. However, if the prolicsl are below
Task/Context Association component to associate @ threshold value and there is no context matchprediction
unified context with the actions discovered. can be made. When the current predicted task aiihthe Task

Figure 3 Task Model Discovery

e« The number of prediction hits as indicated by th
Proactivity prediction feedback.

e The number of actions executed since the
discovery cycle.



Identifier searches the Task Model to allocateattéon the user
actually performed as illustrated in Figure 6. litaction is
found, the next action is chosen based on prolahitid context
match. No prediction can be made if the probabdgitare below
a certain threshold and there is no context match.

The predicted action is sent to Proactivity whichurn sends
a prediction feedback to the User Intent Managelicating
whether the User Intent prediction was acceptablié user or
not. Based on this feedback, the User Intent Managémtains a
prediction hit percentage which assists the detia®to when to
start a task discovery cycle as described in Seétib.

If the previous prediction cycle was successful
If there are more actions in the currerghgdicted task
Predict the next action in task
Else if the last action in the task hag jusen performed
Check next tasks in the Task Model
Choose next task based on probal#llicpntext match
If there is no context match & proHdigis below a
threshold value
Inform Proactivity that a prediction can’t beane
Else
Predict the first action in the task with highest
probability and/or closest context match

Else if previous prediction cycle was not successful
Locate last action performed by the usehim Task Model
If action is found
Check next actions in the Task Model
Choose next action based on probabSligontext match
If there is no context match & probétsk below a
threshold value
Inform Proactivity that a prediction can’t beane
Else
Predict action with highest probability and/or clese
context match
Else if action not found
Inform Proactivity that a prediction carse made
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5 CONCLUSION AND FUTURE WORK

In this paper, the notion of a Personal Smart SHRSS) is
introduced and an overview of the Persist systerhit@cture is
given. The User Intent component required to suppoe
proactive behaviour in Persist is described. Thuhitecture of



the User Intent subsystem is explained. A formdind®n of
the task discovery problem is provided. The usehef task
model discovered to predict the user’'s next intdni@desk/action
is described. Associating user context with thé&gatiscovered
and using such context to assist in the prediatibthe user’s
intended task/action is introduced.

A number of open issues still need to be tacklethenUser
Intent subsystem. This includes the pattern disgove
algorithm(s) to be used in task discovery. The dssaf
associating context with the actions and task disam also
needs further research. Work is required to defieeformat in
which the discovered task model is stored and wtiésemodel
should be stored. One proposal is to store theodésed task
model as a graph in the Prediction part of the Useent
subsystem and periodically update a backup copheénPSS’s
database. However, partitioning the model and regooinly part
of it in User Intent is also a serious option as discovered task
model becomes too large to be accommodated in ailenob
device with limited memory capabilities. The use afpriori
knowledge of tasks, defined explicitly by the userbased on
tasks performed by other users to predict usenirdan also be
considered. Such tasks could improve the accurdcyWser
Intent predictions at the early stage of systengeisehen there
is no enough history to learn an accurate task mode
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