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Abstract.  In a pervasive system it is essential to understand the 
intent of the user in order to predict his/her future behaviour. 
This in turn will help to minimise the user’s administrative 
overheads and assist the user to achieve his/her goals. The aim of 
this paper is to present some aspects of how user intent may be 
handled. It focuses on the architecture supporting the proactive 
features of the Persist pervasive platform. A formal definition of 
the task discovery problem in user intent is provided. The use of 
the discovered task model to predict the user’s next intended 
task/action is introduced including the way in which user context 
can assist in the prediction of the user’s intended task/action.  12 

1 INTRODUCTION 

In a pervasive environment with ubiquitous access to services, 
networks and devices it is essential that mechanisms are in place 
to mitigate the user’s resource management responsibilities and 
aid the user in daily tasks.  Such mechanisms should be based on 
high level knowledge of the user’s preferences and intentions, 
and the resulting user behaviour.  Without such knowledge it is 
difficult for a pervasive system to identify accurately what 
actions will help rather than hinder the user. 

The Daidalos project developed a pervasive system which 
included a personalisation and preference management 
subsystem (including learning) which implicitly gathered and 
managed a set of preferences for the user by monitoring user 
behaviour and extracting preferences from the monitored user 
behaviour history.  This pervasive system was successfully 
demonstrated in December 2008. The personalisation subsystem 
allowed the system to personalise the user’s environment in an 
unobtrusive and beneficial way (based on previous user 
behaviour).  However, this personalisation mechanism was 
solely based on current context and therefore its ability to predict 
future actions was limited.  For example, if the user always turns 
on the heat when they return home, preferences cannot trigger 
such an action on behalf of the user until the user is in the home 
context.   

The Persist project is an FP7 EU project which started in April 
2008.  It aims to create a rather different form of pervasive 
system but in doing so it will extend and adapt some of the 
developments of the Daidalos system. In particular, it will 
complement the personalisation and preference management 
system with a user intent system.  The aim of the user intent 
system is to discover and manage a model of the user’s 
behaviour in the form of tasks and actions.  An action can be any 
interaction between user and a service while a task is a sequence 
of actions.  Whereas a user preference specifies one action to 

                                                 
1 Department of Computer Science, School of Mathematical and 
Computer Sciences, Heriot Watt University, UK. Email: {ya37, 
ceesmm1, nkt, mhw}@macs.hw.ac.uk. 
2 School of Electrical and Computer Engineering, National Technical 
University of Athens (NTUA), Athens, Greece. Email: {nikosk, 
Ioanna.Roussaki}@cn.ntua.gr. 

perform when a context situation is met, user intent will specify 
a sequence of actions to perform based on past and current user 
behaviour.  This overcomes the limitations on forecasting future 
behaviour and preferences enabling the prediction of 
environment adaptations in the future. 

Returning to the earlier example, user intent may recognise a 
‘going home’ task which starts when the user switches off their 
computer and office lights.  When the system identifies that this 
task is being performed, it could trigger the user’s heating 
system so that the house is at the required temperature for the 
user’s arrival.  

Both user intent predictions and preferences will provide input 
to proactivity mechanisms within the Persist framework.  With 
the addition of user intent predictions, proactive mechanisms can 
perform operations well in advance providing an environment 
that minimises user involvement and enhances user experience. 

The rest of the paper is structured as follows. The next section 
looks at related work investigating user-intent for proactivity in 
pervasive systems.  Section 3 introduces the notion of a Personal 
Smart Space (PSS) and describes the high level design of the 
Persist architecture.  Section 4 illustrates the architecture of the 
Persist User Intent system.  Section 5 concludes and details 
future work. 

2 RELATED WORK 

In the past various projects have addressed the problem of 
adapting environments in a proactive manner. Among the 
pioneers were IBM’s Blue Space [1] and UMA’s Intelligent 
Home project [2], which based proactive adaptations on user 
preferences. However users had to manually create and maintain 
their preference set.  This is no trivial task and the burden of 
such information management responsibilities led to a sparse 
preference set. Therefore, only basic personalised environment 
adaptation was provided by these systems. Another project that 
addressed this challenge was Aura [3].  Aura attempted to 
incorporate user intent to aid proactive actions.  However as with 
the previous projects the user was expected to manually enter 
high level information, such as the user’s current task, as well as 
basic preference information. Once again this approach proved 
to be inefficient, as the burden on the user was not mitigated. 

The MavHome[4] project attempted to reduce the user’s 
information management responsibilities by facilitating 
monitoring and learning mechanisms to gather user information 
unobtrusively. In more detail, MavHome aims to provide a house 
with mechanisms capable of maximizing inhabitants’ comfort 
and minimizing operational cost by predicting the user’s 
intentions with regard to mobility patterns and device usage. In 
order to achieve this, MavHome models locations inside the 
house by creating a dictionary of zone identities treated as 
character symbols and gathers statistics based on the history of 
user movement contexts, or phrases. The prediction algorithm 
used is called “LeZi-update” and is based on the dictionary-
based LZ78 compression algorithm. In order to predict the user’s 
next action, the system identifies patterns observed in past 



 

inhabitants’ activities. User actions are represented by 
characters, which are monitored and stored in a history log. The 
algorithm used is called Smart Home Inhabitant Prediction 
(SHIP) that basically matches the most recent sequence of events 
with sequences in collected histories. 

Specter [5] is a mobile personal assistant aiming to assist 
users in their everyday life tasks or situations. The system learns 
and binds situations and services between the user and the 
system, in a collaborative process. Specter proposes a memory 
model that consists of two main parts that cater for short-term 
memory and long-term memory. Contextual data provided by the 
environment is initially collected and maintained in short-term 
memory and forms a snapshot of current user context. At this 
point, context-aware services can be provided via rules which 
have been previously defined by the user. When stored 
information becomes outdated, it is transferred to long-term 
memory, where there are opportunities for review and evaluation 
by the user in a process called introspection. The process 
performed on long-term memory leads to a learned user model 
that reflects the user’s situation and activities. 

Synapse [6] is a context-aware service platform for the 
provision of specific services to users. Synapse learns different 
patterns of user behaviour (i.e. tasks) by exploiting the recorded 
histories of context and services. Based on the user’s current 
situation and task, Synapse can predict and provide the most 
appropriate services. The creation of a user model is based on 
Bayesian networks or on Hidden Markov Models. In case there 
is a system uncertainty, the system asks for user input, 
something that allows for more accurate personalization, but at 
the same time the user might be disturbed by too many pop-up 
messages. In [7], a system is presented that supports proactive, 
modelling-based, adaptations in a user’s office. The system 
learns the patterns of the user’s behaviour in an office 
environment by utilizing context history. Initially, the user 
controls the environment of an office (e.g. opening/closing 
windows, turning lights on/off, and adjusting the temperature). 
Gradually, the system learns the user’s situation and behaviour 
as the size of context history data increases. After some time, the 
system is capable of providing dynamic adjustments based on 
the created user model, without the need for predefined rules. 
The system includes two databases, one for storing context 
history and one for storing the learned user model. The learning 
process is based on a fuzzy set based decision tree learning 
algorithm. 

3 THE PERSIST SYSTEM 

A Personal Smart Space (PSS) is defined by a set of services 
within a dynamic space of connectable devices where the set of 
services are owned, controlled, or administered by a single user 
or organisation. It facilitates interactions with other PSSs, is self-
improving and capable of proactive behaviour. Thus, a PSS is: 
user centric, always controlled by a single user; it is mobile; it 
allows interactions with other PSSs and is capable of self-
improvement. 

This section elaborates on the Persist system and more 
specifically, on the PSS high level architecture design. In order 
to provide a high level specification of the Persist architecture, 
five main layers have been distinguished in the functional 

design, where each layer incorporates various component blocks 
and components that are essential to the design of the PSS 
environment. The layered PSS architecture of Persist is depicted 
in Figure 1.Each layer addresses a well defined part of the PSS 
functionality. The names and purpose of these layers are 
presented hereafter.  

 
Figure 1. The high level architecture of Personal Smart Spaces 

 
Layer 1 - Devices 
The PSS definition suggests that a single PSS can span many 

different devices. Depending on their processing and networking 
capabilities, these devices may either implement the PSS stack 
or part of it, or simply interact with the rest of the PSS 
framework. 

Based on a study of the functional/technical commonalities of 
current communication and computing leading technologies, the 
devices that may be part of a PSS have been classified as 
follows: (i) servers (i.e. independent computers dedicated to 
provide one or more services over a computer network; e.g. 
Windows Media Center, Apple Itheatre, PCs), (ii) laptops (i.e. 
small-sized portable computers; e.g. Mac Book, Sony Vaio, 
Tablet PC), (iii) mobile phones (i.e. pocket-sized handheld 
computing devices; e.g. iPhone, HTC Tytan, Nokia N90, PDA), 
(iv) sensors (i.e. group of devices that may be embedded into 
other devices, can measure a physical parameter and convert it 
into a signal, which in turn can be read by an observer or an 
instrument; e.g. RFID readers, GPS location estimators, 
accelerometers, thermometers, altimeter, barometer, air speed 
indicator, signal strength measurer), (v) smart objects (i.e. 
resource-constrained devices that can be connected to the 
Internet or a LAN via a wifi connection, ethernet, GPRS, 3G, 
etc., usually intended for displaying multimedia content such as 
a combination of text, audio, still images, animation and video or 
other everyday objects enhanced with pervasive facilities; e.g. 
WiFi photoframes, Chumby, Nabaztag, home eAppliances, 
surveillance cameras) and (vi) interactive entertainment 
electronic devices (i.e. interactive entertainment electronic 
devices producing a video display signal, which can be used with 
a display device (a television, monitor, etc.) to display a video 
game or an external source of signal, such as ipTV; e.g. set-top 
box, gaming console). 

Layer 2 - System Run-Time Environment 
The System Run-Time layer of the PSS architecture serves as 

an abstraction layer between the underlying device operating 



 

system and the PSS software, in order to achieve a high degree 
of platform independence. Essentially, this layer is the one that 
makes a device PSS-enabled. Hence, employing an “off-the-
shelf” implementation of a virtual machine run-time will offer 
PSS portability over a wide range of software and hardware 
platforms. This layer is also responsible for the device mobility 
and sensor management. 

Layer 3 - Overlay Network Management 
The Overlay Network Management layer provides the PSS 

architecture with a Peer-to-Peer (P2P) management and 
communication layer. The services within this layer provide 
functionality for PSS peer group management, PSS peer 
discovery, peer PSS group discovery, PSS communication 
management and message routing between peer networks of 
PSSs. It is assumed that the lower level ad-hoc networking 
functionality will be managed by other 3rd party components and 
therefore it is considered outside the scope of the Persist Project. 

Layer 4 - Service Run-Time Environment 
The Service Run-Time Environment layer provides a 

container for the PSS services. It supports service life cycle 
management features and provides a service registry, as well as, 
a device registry. Moreover, it allows for service management in 
a distributed fashion across multiple devices within the same 
PSS. In this context, it delivers fault tolerance as well as device 
resource management. The Service Run-Time Environment also 
provides advanced information management features for 
achieving high availability of data, for addressing storage 
requirements of PSS services, and for supporting event and 
message management. 

 Layer 5 - PSS Framework 
The PSS Framework layer is the core of the PSS architecture. 

Its functionality includes service discovery, composition and 
session management (both PSS and 3rd party services) as well as 
management of context information, including user preferences. 
Moreover, the PSS Framework layer supports inference of 
context information, automatic learning of preferences, and 
identification of user’s future intentions. This information, 
together with data provided by the recommender system of this 
layer, enables the proactive facilities of the PSS platform. The 
PSS Framework layer also offers support for user interaction 
monitoring as well as user feedback collection and management. 
Furthermore, this layer provides support for conflict resolution, 
grouping of context data and preferences and resource sharing. 
Finally, the PSS Framework layer enables security and privacy 
management, demonstrating features such as access control, 
identity management, privacy and trust management, and policy 
management. However, it should be mentioned that some 
security and privacy facilities of the PSS also need support from 
layers 2, 3 and 4 to enable a fully secure and privacy-aware PSS 
system. 
 

4 OVERVIEW OF THE USER INTENT 
SUBSYSTEM 

As described in Section 3, to support the proactive behaviour in 
Persist, user intentions need to be predicted. Figure 2 illustrates 
the User Intent subsystem. Controlled by the User Intent 
Manager, the Discovery component is responsible for identifying 

a set of tasks the user could perform in the future in specific 
contexts based on learning from the user’s history of actions and 
contexts. The Task Model produced, composed of the tasks 
identified, is passed to the Prediction component. Based on 
actions the user recently performed and the user’s current 
context, the Prediction component uses the Task Model to infer 
the next action/task the user is intending to perform. This 
prediction is passed to the Proactivity component which later 
sends feedback to User Intent regarding the correctness of the 
task/action predicted, as judged by the user’s reaction to the 
action taken.  

The rest of this section is structured as follows. An overview 
of task discovery is provided in Section 4.1. This is followed in 
Section 4.2 by a description of task/action prediction to support 
proactivity.         

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The User Intent System Architecture 

4.1 Task and Context Pattern Discovery 

 
The Discovery part of User Intent shown in Figure 2 identifies a 
set of tasks the user might perform in the future based on user 
history. Formally, user history can be expressed as a set {(a1, c1), 
(a2, c2),…,(an, cn)} where (ai, ci) represents the action ai 

performed by the user in context snapshot ci. A number of 
attributes can be included in a context snapshot such as location, 
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the type and name of the service the user is currently interacting 
with, other services currently running in the PSS, etc. 

The task discovery problem includes recognising a set of tasks 
T1, T2, …,Ts, where Tj is composed of a sequence of actions as 
illustrated in Figure 3. Pt{i,j}  denotes the probability of starting Tj 
on completion of Ti. The probability of performing ay after ax is 
Pa{x,y} It is possible for one action to be part of more than one 
task.  
 

 

 

 

 

 

 

 

 

 

Figure 3 Task Model Discovery 
 

As illustrated in Figure 4, the User Intent Manager triggers a 
new discovery cycle based on the following factors:  

• The number of prediction hits as indicated by the 
Proactivity prediction feedback. 

• The number of actions executed since the last 
discovery cycle. 

• The time elapsed since the last discovery cycle. 
The following steps are performed in a discovery cycle:  

• The User Intent Manager instructs Task Discovery to 
start the discovery cycle. 

• On Task Discovery request, the Learning Manager 
applies a pattern recognition algorithm to the user 
history in order to detect patterns of user actions. Each 
pattern identified is a potential user task. The 
probability of performing a task given the previous 
task performed is computed. The probability of 
undertaking an action given the previous action 
performed is also computed. 

• Once the tasks are identified, associating user context 
to the actions forming the tasks discovered is required,  
as the user could in the past have performed the same 
task in different contexts. Analysis is performed by the 
Task/Context Association component to associate a 
unified context with the actions discovered. 

• The Task Model is updated with the new task 
discovery model.   

 

 
 

Figure 4 The Task Discovery Cycle 

4.2 Task Prediction   
The Prediction part of User Intent uses the Task Model produced 
by Discovery to predict the next task/action the user is intending 
to perform. A number of factors could be taken into account in 
predicting the next intended task/action which includes: the 
previous action predicted, the feedback from Proactivity on the 
accuracy of this prediction, the action the user actually 
performed (if different from what was predicted) and the list of 
subsequent correct predictions made previously. An initial 
proposal for an algorithm to predict user intention is given 
below. A prediction cycle starts when the User Intent Manager 
receives from User Interaction Monitoring the details of the 
current action the user is performing. The Task Identifier checks 
the current task prediction against the action that the user has 
performed. Figure 4 illustrates the prediction steps required 
when the current predicted task is valid and there are more 
actions in the task as specified in the Task Model. In this case, 
the prediction will be the next action in the currently predicted 
task. If the current predicted task is correct and there are no more 
actions in the task, the next possible tasks are retrieved from the 
Task Model as illustrated in Figure 5. The Task Identifier 
decides on the next task based on probability and/or the match 
between the user’s current context and the context associated 
with the next possible tasks. The predicted action will be the first 
action in the chosen task. However, if the probabilities are below 
a threshold value and there is no context match, no prediction 
can be made. When the current predicted task is invalid, the Task 
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Identifier searches the Task Model to allocate the action the user 
actually performed as illustrated in Figure 6. If the action is 
found, the next action is chosen based on probability and context 
match. No prediction can be made if the probabilities are below 
a certain threshold and there is no context match.     

The predicted action is sent to Proactivity which in turn sends 
a prediction feedback to the User Intent Manager indicating 
whether the User Intent prediction was acceptable to the user or 
not. Based on this feedback, the User Intent Manager maintains a 
prediction hit percentage which assists the decision as to when to 
start a task discovery cycle as described in Section 4.1.  
 
If the previous prediction cycle was successful 
         If there are more actions in the currently predicted task 
 Predict the next action in task 
        Else if the last action in the task has just been performed 
              Check next tasks in the Task Model 
              Choose next task based on probability & context match 
             If there is no context match & probabilities below a  
             threshold value 
    Inform Proactivity that a prediction can’t be made 
             Else 

Predict the first action in the task with highest 
probability and/or closest context match 

 
Else if previous prediction cycle was not successful 
      Locate last action performed by the user in the Task Model 
     If action is found 
             Check next actions in the Task Model 
            Choose next action based on probability & context match 
            If there is no context match & probabilities below a  
            threshold value 
    Inform Proactivity that a prediction can’t be made 
           Else 

Predict action with highest probability and/or closest 
context match 

    Else if action not found  
         Inform Proactivity that a prediction can’t be made 
 

 
 

Figure 4 Prediction When Current Predicted Task is Valid with 
More Actions in Task   

 

 
 
Figure 5 Prediction When Current Predicted Task is Valid with 

No More Actions in Task   
 

 

 
 

Figure 6 Prediction When Current Predicted Task is Invalid 
 

5 CONCLUSION AND FUTURE WORK 

In this paper, the notion of a Personal Smart Space (PSS) is 
introduced and an overview of the Persist system architecture is 
given. The User Intent component required to support the 
proactive behaviour in Persist is described. The architecture of 



 

the User Intent subsystem is explained. A formal definition of 
the task discovery problem is provided. The use of the task 
model discovered to predict the user’s next intended task/action 
is described. Associating user context with the tasks discovered 
and using such context to assist in the prediction of the user’s 
intended task/action is introduced. 

A number of open issues still need to be tackled in the User 
Intent subsystem. This includes the pattern discovery 
algorithm(s) to be used in task discovery. The issue of 
associating context with the actions and task discovered also 
needs further research. Work is required to define the format in 
which the discovered task model is stored and where this model 
should be stored. One proposal is to store the discovered task 
model as a graph in the Prediction part of the User Intent 
subsystem and periodically update a backup copy in the PSS’s 
database. However, partitioning the model and storing only part 
of it in User Intent is also a serious option as the discovered task 
model becomes too large to be accommodated in a mobile 
device with limited memory capabilities. The use of a priori 
knowledge of tasks, defined explicitly by the user or based on 
tasks performed by other users to predict user intent can also be 
considered. Such tasks could improve the accuracy of User 
Intent predictions at the early stage of system usage when there 
is no enough history to learn an accurate task model. 
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